Electromagnetic equivalent model for phase conjugate mirror based on the utilization of left-handed material.

نویسندگان

  • Guoan Zheng
  • Lixin Ran
  • Changhuei Yang
چکیده

An electromagnetic equivalent model for the phase conjugate mirror (PCM) is proposed in this paper. The model is based on the unique property of the isotropic left-handed material (LHM) - the ability of LHM to reverse the phase factors of propagative waves. We show that a PCM interface can be substituted with a LHM-RHM (right-handed material) interface and associated image sources and objects in the LHM. This equivalent model is fully equivalent in the treatment of propagative wave components. However, we note that the presence of evanescent wave components can lead to undesirably surface resonance at the LHM-RHM interface. This artefact can be kept well bounded by introducing a small refractive index mismatch between the LHM and RHM. We demonstrate the usefulness of this model by modelling several representative scenarios of light patterns interacting with a PCM. The simulations were performed by applying the equivalent model to a commercial finite element method (FEM) software. This equivalent model also points to the intriguing possibility of realizing some unique LHM based systems in the optical domain by substituting a PCM in place of a LHM-RHM interface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase-Conjugate-Mirror Inspired Approach for Building Cloaking Structures with Left-handed Materials.

A phase conjugate mirror (PCM) has a remarkable property of cancellation the back-scattering wave of the lossless scatterers. The similarity of a phase conjugate mirror to the interface of a matched RHM (right-handed material) and a LHM (left-handed material) prompts us to explore the potentials of using the RHM-LHM structure to achieve the anti-scattering property of the PCM. In this paper, we...

متن کامل

Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror

Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phas...

متن کامل

Miniaturized High-Pass Filter Based on Balanced Composite Right-Left Handed Transmission Line Using Meander Spiral Complementary Split Ring Resonators

In this paper, a compact high-pass filter (HPF) with a sharp rejection response based on the balanced composite right-left handed (CRLH) transmission line (TL) concept is proposed. A series LC resonator using an interdigital capacitor and meander lines is designed. Also, a meander spiral complementary split ring resonator (MSCSRR) is used to realize the parallel LC resonator. The high-pass filt...

متن کامل

Analytical Investigation of TM Surface Waves in 1D Photonic Crystals Capped by a Self-Focusing Left-Handed Slab

In this paper, the localized TM surface waves of a nonlinear self-focusingleft-handed slab sandwiched between a uniform medium and a one-dimensionalphotonic crystal (1D PC) is analytically investigated. Our method is based on the firstintegral of the nonlinear Maxwell's equations. For the TM surface waves, the presenceof two electric field components makes the analysis difficult. Therefore, we ...

متن کامل

-

In this paper a method for digitally recording four quarter-reference-wave-holograms (by CCD) in a Mach-Zehnder interferometer setup, and reconstructing the object wave-front by numerical method is presented. The terms of direct transmission, auto-correlation and conjugate wave in the four wave reconstruction are cancelled out and only one original object wave is left after overlapping. Reconst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 15 21  شماره 

صفحات  -

تاریخ انتشار 2007